

Suggested Plan for Assessment 4
(Dining Philosophers Animation)

(0) Start with the q7.occ starter file from your
exercises folder – also on raptor:

\courses\co538\exercises\q7.occ

(1) Add report channels to the philosopher, fork and

security processes – initially, these can carry INT
codes for the states being reported. What should
these states and codes be? As soon as possible,
change to the method in (2) below – this requires
knowledge of variant protocols (see the *protocol*
slides 64-71). Meanwhile, skip to item (3).

(2) Use a suitable CASE protocol (same one for all

reports). The philosopher and fork messages are
just tags (thinking, hungry, sitting, eating,
..., on.table, held.right, held.left) or
similar names. The security message has a tag
(e.g. security); then an INT (for how many are in
the dining room).

(3) Wire all these from the college processes to an
array of 11 external channels - say philosophers
use elements 0-4, forks 5-9 and the security guard
uses element 10. See *applying* slides 61 and
64. You could use the suggestion in slide 63
(which is cleaner) – but the slide 64 approach
makes it easier to program the display process
(slide 65). This display has to catch all the reports

from the college and process them for animation on
the screen – see item (6) below. With three
separate groups of report channels (slide 63),
providing a fair service to all processes in the
college making reports is tricky. With one array
(slide 64), this is easy.

(4) In the main process, set up a network connecting
the college and a display process with an array of
11 report channels. See *applying* slide 65.

(5) In philosopher, program the thinking and eating
periods initially as fixed length delays – say 5 and 8
seconds respectively. Give each philosopher its
own id (as a VAL INT parameter), where the ids run
from 0 through 4. To vary each philosopher's
behaviour slightly, add its id to the chosen delay
times above.

(6) Program the display process to (replicated) ALT
over all its incoming report channels. Generate one
line of text for each report received. This line
should say which phil and/or fork is involved
(deducible from the channel index of the ALT input
guard). This may be tricky for fork messages: e.g.
it should say the fork number and which phil is
holding it.

Now you have a system that should compile and run!
The next two items, (7) and (8), will simplify things – but
only after reading the relevant bits of the *shared-etc*
slides. Initially, skip to item (9).

(7) Suggest using a single “SHARED! CHAN” report
channel, instead of the array of 11 individual
channels. See slides 3-10 of *shared-etc* and
slide 69 of *applying*. The college header now
looks something like:

 PROC reporting.college

 (SHARED CHAN REPORT report!)

and inside, all its (PAR) components can plug into
the shared “report!” parameter (slide 71 of
applying).

Now, the display just takes a single (unshared)
report input channel (slide 70 of *applying*) and
simply waits on that at the start of its loop - no
ALTing and no need to worry about fairness, since
the reporters FIFO queue on their shared end of
the channel. But now, the report channel needs
enhancing to add identity numbers (INTs) to each
philosopher and fork message (because display no
longer has channel indices from which it can
deduce which philosopher or fork sent the
message).

So, each philosopher and fork process needs an
extra "VAL INT id" parameter (which should be from
0-4 both for philosophers and for forks). Work out
how to pass these into the philosopher and fork
instances (it's trivial).

Does the system still work?

(8) Suggest using protocol inheritance (slides 28-37 of
the same *shared-etc*). Have separate CASE
protocols for philosopher, fork and security reports.
Use these appropriately for the philosopher, fork
and security processes. Define a REPORT protocol
to extend those for philosopher, fork and security.

Does the system still work?

(9) Check out the main process (q7). The starter file

has code there to set a random number seed. Find
out how to use the random function:

 INT, INT FUNCTION random

 (VAL INT n, seed)

which returns (first) a pseudo-random INT in the
range 0..(n-1) and (second) an updated seed value,
which must be used the next time random is called.
See *shared-etc* slides 88-97 for occam-π
functions. Be happy about functions returning two
(or more) values - it's a useful mechanism (Java
methods can only return a single result).

You can find documentation about random by
following the link to the on-line documentation from
the module page (scroll past the weekly notices,
6th. bullet in the Practical Resources box, click on
"Module course", search for "random" and follow
the link to "Function random"). Alternatively, go
directly to:

 http://occam-pi.org/occamdoc/
course.html#name-random

(10) Each philosopher needs a distinct seed to use with
random. Easy, pass all philosophers the seed set
up in the main q7 process and get each philosopher
to add its id number. Now, they will all have
different seeds ... but there is a problem with the
simple (fast) random number logic used by the
random function – it needs to ‘warm up’ (see the
anon Q&A year 2006, Q55).

You are strongly advised to make use of the anon
Q&A resource. For this assessment, look in the
keyword-index for things like "q7" (an old number
for this exercise), "coursework" and "random".

(11) Improve the programming of the thinking and eating

times of each philosopher – see (5) above – so that
they wait for a random amount of time within the
limits defined by VAL INTs in their starter file
(min.think.time, max.think.time, etc.).

Does the system still work?

(12) Improve the programming of the display process so

that we get some kind of animation, rather than
scrolling of lines of text. Examples can be seen
with the Transterpreter by loading any of the files
from the raptor folder:

 \courses\co538\answers\dining-phils-

transterpreter*.occ

and running them from the occPlug. Don't try to
compile! The *basic* solution is:

 \courses\co538\answers\dining-phils-

transterpreter\a7-basic.occ

which runs the minimum standard of animation that
can achieve full marks on this assessment. If you do
just this, you probably won't get full marks – because
you will lose some somewhere. By achieving a
better animation (e.g. where the phils/forks/etc.
actually move in parallel – though not, of course,
doing exactly the same things), you will get bonus
marks that can bring you back to 100%. The other
solutions there are to challenge your imagination
(and programming, ☺).

You'll need to find out about:

 PROC cursor.x.y

 (VAL BYTE x, y, CHAN BYTE out!)

Look up its documentation - it's in "Module
course":

 http://occam-pi.org/occamdoc/

course.html#name-cursor.x.y

The other "cursor" (and "erase") PROCs there
may also be helpful.

You should long ago have looked at:

 examples\test-utils.occ

for more examples on the use of the screen
utitlites.

Also, check out the final component of the PAR in
your starter file (labelled: "probably delete this
process").

(13) Modify the fork process to 'fair alt' over its pickup

channels from its neighbouring philosophers. Same
for display, if it's still receiving from an array of
report channels.

(14) Make your animation interactive (see slide 70 of

applying). The interaction could simply be to
freeze and resume all action. Harder is to speed up
and slow down the action. Maybe send a message
to college security to change the maximum number
of philosophers it allows in to the dining room ...
setting this to 5 means deadlock is possible ...
setting it to lower numbers, including zero, will
change what you see happening. Maybe send
message to individual philosophers that change its
behaviour in some (interesting) way.

Note: the last two ideas above require multiple
channels from the keyboard monitor to the
reporting college - one for each target process in
the college. Only one is shown in slide 70.

(15) A marking scheme for this assessment is in the
answer to Q103 (of the anonymous Q&As for 2006).
Go look. This year's scheme will be similar (but will
have some marks for interaction). You will also
need to provide some system diagrams. I will
publish an actual marking scheme shortly.

Peter Welch (7th. November, 2012).

